Shortcuts

PyTorch 模型分析

Author: Suraj Subramanian

PyTorch includes a profiler API that is useful to identify the time and memory costs of various PyTorch operations in your code. Profiler can be easily integrated in your code, and the results can be printed as a table or returned in a JSON trace file.

Note

Profiler supports multithreaded models. Profiler runs in the same thread as the operation but it will also profile child operators that might run in another thread. Concurrently-running profilers will be scoped to their own thread to prevent mixing of results.

Note

PyTorch 1.8 introduces the new API that will replace the older profiler API in the future releases. Check the new API at this page.

Head on over to this recipe for a quicker walkthrough of Profiler API usage.


import torch
import numpy as np
from torch import nn
import torch.autograd.profiler as profiler

Performance debugging using Profiler

Profiler can be useful to identify performance bottlenecks in your models. In this example, we build a custom module that performs two sub-tasks:

  • a linear transformation on the input, and

  • use the transformation result to get indices on a mask tensor.

We wrap the code for each sub-task in separate labelled context managers using profiler.record_function("label"). In the profiler output, the aggregate performance metrics of all operations in the sub-task will show up under its corresponding label.

Note that using Profiler incurs some overhead, and is best used only for investigating code. Remember to remove it if you are benchmarking runtimes.

class MyModule(nn.Module):
    def __init__(self, in_features: int, out_features: int, bias: bool = True):
        super(MyModule, self).__init__()
        self.linear = nn.Linear(in_features, out_features, bias)

    def forward(self, input, mask):
        with profiler.record_function("LINEAR PASS"):
            out = self.linear(input)

        with profiler.record_function("MASK INDICES"):
            threshold = out.sum(axis=1).mean().item()
            hi_idx = np.argwhere(mask.cpu().numpy() > threshold)
            hi_idx = torch.from_numpy(hi_idx).cuda()

        return out, hi_idx

Profile the forward pass

We initialize random input and mask tensors, and the model.

Before we run the profiler, we warm-up CUDA to ensure accurate performance benchmarking. We wrap the forward pass of our module in the profiler.profile context manager. The with_stack=True parameter appends the file and line number of the operation in the trace.

Warning

with_stack=True incurs an additional overhead, and is better suited for investigating code. Remember to remove it if you are benchmarking performance.

model = MyModule(500, 10).cuda()
input = torch.rand(128, 500).cuda()
mask = torch.rand((500, 500, 500), dtype=torch.double).cuda()

# warm-up
model(input, mask)

with profiler.profile(with_stack=True, profile_memory=True) as prof:
    out, idx = model(input, mask)

Improve memory performance

Note that the most expensive operations - in terms of memory and time - are at forward (10) representing the operations within MASK INDICES. Let’s try to tackle the memory consumption first. We can see that the .to() operation at line 12 consumes 953.67 Mb. This operation copies mask to the CPU. mask is initialized with a torch.double datatype. Can we reduce the memory footprint by casting it to torch.float instead?

model = MyModule(500, 10).cuda()
input = torch.rand(128, 500).cuda()
mask = torch.rand((500, 500, 500), dtype=torch.float).cuda()

# warm-up
model(input, mask)

with profiler.profile(with_stack=True, profile_memory=True) as prof:
    out, idx = model(input, mask)

print(prof.key_averages(group_by_stack_n=5).table(sort_by='self_cpu_time_total', row_limit=5))

"""
(Some columns are omitted)

-----------------  ------------  ------------  ------------  --------------------------------
             Name    Self CPU %      Self CPU  Self CPU Mem   Source Location
-----------------  ------------  ------------  ------------  --------------------------------
     MASK INDICES        93.61%        5.006s    -476.84 Mb  /mnt/xarfuse/.../torch/au
                                                             <ipython-input-...>(10): forward
                                                             /mnt/xarfuse/  /torch/nn
                                                             <ipython-input-...>(9): <module>
                                                             /mnt/xarfuse/.../IPython/

      aten::copy_         6.34%     338.759ms           0 b  <ipython-input-...>(12): forward
                                                             /mnt/xarfuse/.../torch/nn
                                                             <ipython-input-...>(9): <module>
                                                             /mnt/xarfuse/.../IPython/
                                                             /mnt/xarfuse/.../IPython/

 aten::as_strided         0.01%     281.808us           0 b  <ipython-input-...>(11): forward
                                                             /mnt/xarfuse/.../torch/nn
                                                             <ipython-input-...>(9): <module>
                                                             /mnt/xarfuse/.../IPython/
                                                             /mnt/xarfuse/.../IPython/

      aten::addmm         0.01%     275.721us           0 b  /mnt/xarfuse/.../torch/nn
                                                             /mnt/xarfuse/.../torch/nn
                                                             /mnt/xarfuse/.../torch/nn
                                                             <ipython-input-...>(8): forward
                                                             /mnt/xarfuse/.../torch/nn

      aten::_local        0.01%     268.650us           0 b  <ipython-input-...>(11): forward
      _scalar_dense                                          /mnt/xarfuse/.../torch/nn
                                                             <ipython-input-...>(9): <module>
                                                             /mnt/xarfuse/.../IPython/
                                                             /mnt/xarfuse/.../IPython/

-----------------  ------------  ------------  ------------  --------------------------------
Self CPU time total: 5.347s

"""

The CPU memory footprint for this operation has halved.

Improve time performance

While the time consumed has also reduced a bit, it’s still too high. Turns out copying a matrix from CUDA to CPU is pretty expensive! The aten::copy_ operator in forward (12) copies mask to CPU so that it can use the NumPy argwhere function. aten::copy_ at forward(13) copies the array back to CUDA as a tensor. We could eliminate both of these if we use a torch function nonzero() here instead.

class MyModule(nn.Module):
    def __init__(self, in_features: int, out_features: int, bias: bool = True):
        super(MyModule, self).__init__()
        self.linear = nn.Linear(in_features, out_features, bias)

    def forward(self, input, mask):
        with profiler.record_function("LINEAR PASS"):
            out = self.linear(input)

        with profiler.record_function("MASK INDICES"):
            threshold = out.sum(axis=1).mean()
            hi_idx = (mask > threshold).nonzero(as_tuple=True)

        return out, hi_idx


model = MyModule(500, 10).cuda()
input = torch.rand(128, 500).cuda()
mask = torch.rand((500, 500, 500), dtype=torch.float).cuda()

# warm-up
model(input, mask)

with profiler.profile(with_stack=True, profile_memory=True) as prof:
    out, idx = model(input, mask)

print(prof.key_averages(group_by_stack_n=5).table(sort_by='self_cpu_time_total', row_limit=5))

"""
(Some columns are omitted)

--------------  ------------  ------------  ------------  ---------------------------------
          Name    Self CPU %      Self CPU  Self CPU Mem   Source Location
--------------  ------------  ------------  ------------  ---------------------------------
      aten::gt        57.17%     129.089ms           0 b  <ipython-input-...>(12): forward
                                                          /mnt/xarfuse/.../torch/nn
                                                          <ipython-input-...>(25): <module>
                                                          /mnt/xarfuse/.../IPython/
                                                          /mnt/xarfuse/.../IPython/

 aten::nonzero        37.38%      84.402ms           0 b  <ipython-input-...>(12): forward
                                                          /mnt/xarfuse/.../torch/nn
                                                          <ipython-input-...>(25): <module>
                                                          /mnt/xarfuse/.../IPython/
                                                          /mnt/xarfuse/.../IPython/

   INDEX SCORE         3.32%       7.491ms    -119.21 Mb  /mnt/xarfuse/.../torch/au
                                                          <ipython-input-...>(10): forward
                                                          /mnt/xarfuse/.../torch/nn
                                                          <ipython-input-...>(25): <module>
                                                          /mnt/xarfuse/.../IPython/

aten::as_strided         0.20%    441.587us          0 b  <ipython-input-...>(12): forward
                                                          /mnt/xarfuse/.../torch/nn
                                                          <ipython-input-...>(25): <module>
                                                          /mnt/xarfuse/.../IPython/
                                                          /mnt/xarfuse/.../IPython/

 aten::nonzero
     _numpy             0.18%     395.602us           0 b  <ipython-input-...>(12): forward
                                                          /mnt/xarfuse/.../torch/nn
                                                          <ipython-input-...>(25): <module>
                                                          /mnt/xarfuse/.../IPython/
                                                          /mnt/xarfuse/.../IPython/
--------------  ------------  ------------  ------------  ---------------------------------
Self CPU time total: 225.801ms

"""

Further Reading

We have seen how Profiler can be used to investigate time and memory bottlenecks in PyTorch models. Read more about Profiler here:

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources