Intel® PyTorch* 扩展后端¶
为了更好地与 torch.compile 协作,Intel® PyTorch* 扩展实现了一个名为 ipex 的后端。 它旨在提高 Intel 平台上的硬件资源使用效率,从而获得更好的性能。 ipex 后端是通过 Intel® PyTorch* 扩展中进一步的定制设计来实现模型编译的。
使用示例¶
FP32 训练¶
查看下面的示例,了解如何将 ipex 后端与 torch.compile 一起使用,进行 FP32 数据类型的模型训练。
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=128
)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
#################### 代码修改 ####################
import intel_extension_for_pytorch as ipex
# 可选择调用以下 API,应用前端优化
model, optimizer = ipex.optimize(model, optimizer=optimizer)
compile_model = torch.compile(model, backend="ipex")
######################################################
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = compile_model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
BF16 训练¶
查看下面的示例,了解如何将 ipex 后端与 torch.compile 一起使用,进行 BFloat16 数据类型的模型训练。
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=128
)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
#################### 代码修改 ####################
import intel_extension_for_pytorch as ipex
# 可选择调用以下 API,应用前端优化
model, optimizer = ipex.optimize(model, dtype=torch.bfloat16, optimizer=optimizer)
compile_model = torch.compile(model, backend="ipex")
######################################################
with torch.cpu.amp.autocast():
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = compile_model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
FP32 推理¶
查看下面的示例,了解如何将 ipex 后端与 torch.compile 一起使用,进行 FP32 数据类型的模型推理。
import torch
import torchvision.models as models
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
model.eval()
data = torch.rand(1, 3, 224, 224)
#################### 代码修改 ####################
import intel_extension_for_pytorch as ipex
# 可选择调用以下 API,应用前端优化
model = ipex.optimize(model, weights_prepack=False)
compile_model = torch.compile(model, backend="ipex")
######################################################
with torch.no_grad():
compile_model(data)
BF16 推理¶
查看下面的示例,了解如何将 ipex 后端与 torch.compile 一起使用,进行 BFloat16 数据类型的模型推理。
import torch
import torchvision.models as models
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
model.eval()
data = torch.rand(1, 3, 224, 224)
#################### 代码修改 ####################
import intel_extension_for_pytorch as ipex
# 可选择调用以下 API,应用前端优化
model = ipex.optimize(model, dtype=torch.bfloat16, weights_prepack=False)
compile_model = torch.compile(model, backend="ipex")
######################################################
with torch.no_grad(), torch.autocast(device_type="cpu", dtype=torch.bfloat16):
compile_model(data)